氢能源行业深度报告:“氢能时代”大幕拉开
1.1 氢能是第三次能源变革的重要媒介
全球能源行业正经历着以低碳化、无碳化、低污染为方向的第三次能源变革,随 着全球能源需求不断增加,全球电气化趋势明显,未来以可再生能源增长幅度最大的 电力能源结构将持续变化,进一步形成以石油、天然气、煤炭、可再生能源为主的多 元化能源结构。
氢能作为一种清洁、高效、安全、可持续的二次能源,可通过一次能源、二次能 源及工业领域等多种途径获取,氢能将成为第三次能源变革的重要媒介。氢能可以用 于交通运输,作为石油精炼、氨生产的原料,以及金属精炼和住宅部门的加热和烹饪 等方方面面。而且,氢气有潜力成为整合不同基础设施的能源载体,以提高经济效率、 可靠性、灵活性,而且其中许多用途将有助于减少电力和交通部门的碳排放。氢还可 以为电力部门提供大规模的长期能量存储。此外,氢能源存储系统可以提供辅助电网 服务,如应急、负荷跟踪和调节储备,这些服务可以提供额外的能量来源,从而降低 电解制氢的成本。氢还可以成为 VRE 和交通部门之间的另一座桥梁。
1.2 投资总结:“政策扶持”&“技术进步”双引擎驱动氢能产业发展
2019 年氢能源首次写入《政府工作报告》,将氢能纳入中国能源体系之中,我国 真正开启氢能大发展元年,按照白皮书路线规划,预计到 2050 年氢能在中国能源体 系中的占比约为 10%,氢气需求量接近 6000 万吨,年经济产值超过 10 万亿元,全 国加氢站达到 10000 座以上,燃料电池汽车年产量达到 520 万辆。
氢能产业链分为制氢、储运、加氢站、氢燃料电池应用等多个环节。与锂电池产 业链相比,氢能源与燃料电池产业链更长,复杂度更高,理论经济价值含量更大。从 氢能实际应用来看,氢燃料电池汽车是氢能高效利用的最有效途径,当前氢能产业链 已初具雏形,且燃料电池系统性能已满足商业化需求,但燃料电池汽车的大规模商业 化应用依然受经济性及实用性制约。因此,产业发展初期的政策扶持显得尤为重要, 政策扶持下产业进入规模化-降本-开拓市场的良性内循环,此外,持续的技术进步也 将反哺解决各环节核心技术的成本制约,进一步提升商业化竞争力。
从经济性及技术进步角度来看,各环节都将分阶段发展满足商业化需求:
制氢产业:短期优先选用工业副产氢,中期采用化石能源制氢结合碳捕捉技术, 长期采用可再生能源电解水制氢;
氢能储运:将按照“低压到高压”“气态到多相态”的技术发展方向,逐步提升氢气 的储存和运输能力;
燃料电池系统:将持续围绕功率、性能、寿命、成本四大要素而发展。具体应用 集中在交通领域,从商用车切入、乘用车跟进。
2、 氢能是中国构建多元化能源体系关键一环2.1 氢能开发利用是能源清洁化的大势所趋
氢能大储量、零污染、高效率
氢(H)是宇宙储量最丰富的元素,它构成了宇宙质量的 75%,在地球上排第三, 大储量保证其作为能源供给的充足性。氢元素主要以水的形式存在,原料非常容易获 取。此外,氢气的供能方式主要是和氧气反应生成水释放化学能,其产物除了水无其 他中间产物,整个供能过程无浪费、零污染。
氢能源生产和使用形成可循环闭环,实现可持续发展
1970 年通用汽车首次提出“氢经济”的概念。近年来,随着燃料电池的迅速发展, 氢能作为最适宜的燃料也随之进入一个高速发展阶段。氢能来自于水用,使用后的产 物仍为水,由此形成一个可循环闭环系统,具有可持续性。
氢气比能量高,易于实现轻量化和高续航
氢气是常见燃料中热值最高的(142KJ/g),约是石油的 3 倍,煤炭的 4.5 倍。 这 意味着消耗相同质量的石油、煤炭和氢气,氢气所提供的能量最大,这一特性是满足 汽车、航空航天等实现轻量化的重要因素之一。
现阶段来看,氢气作为能量载体的最大竞争对手是锂电池。目前电池市场发展已 经很成熟,然而氢能具备电池所不能比拟的优势,氢气的比能量远远超过电池,并且 没有工作温度限制(电池工作温度范围在-20℃~60℃)。
2.2 能源短缺和环境恶化,加速推动全球氢能开发
脱碳加氢和清洁高效是百年来能源科技进步的趋势
纵观能源的发展历史,从最初使用固态的木柴、煤炭,到液态的石油,直至气态 的天然气,不难看出其 H/C 比提高的趋势和固-液-气形式的渐变过程。木柴的氢碳比 在 1:3~10 之间,煤为 1:1,石油为 2:1,天然气为 4:1。在 18 世纪中叶至今,氢碳 比上升超过 6 倍。每一次能源的“脱碳”都会推动人类社会的进步和文明程度的提高, 可以预见未来能源利用形式中,氢能的占比将会继续提高。
氢虽然主要用作化工基础原料,但在能源转型过程中,其更重要的是作为一种清 洁能源和良好的能源载体,具有清洁高效、可储能、可运输、应用场景丰富等特点。 氢能能够帮助工业、建筑、交通等主要终端应用领域实现低碳化,包括作为燃料电池 汽车应用于交通运输领域,作为储能介质支持大规模可再生能源的整合和发电,应用 于分布式发电或热电联产为建筑提供电和热,为工业领域直接提供清洁的能源等。
目前全球用氢量约 1.15 亿吨,其中约 61%用于炼油和生产化肥等,39%用于生 产甲醇和其他化学品以及燃料等。预计 2050 年氢能将承担全球 18%的能源需求,氢 能产业将创造 3000 万个工作岗位,减少 60 亿吨 CO2排放,创造 2.5 万亿美元的市 场价值。日本、美国、欧洲等主要工业国家均将氢能列入国家能源发展战略,氢能产 业的发展已初具规模,但发展重点有所不同。
日本政府大力推进氢能全产业链发展,致力实现“氢能社会”
为解决过度依赖进口化石能源、核电重启困难以及国内可再生能源禀赋一般等问 题,日本政府高度重视氢能产业的发展。日本经济产业省(METI)2019 年提出了《氢 能与燃料电池战略路线图》,其目标是:第一阶段创造需求,到 2025 年加速推广和 普及氢能交通、民用市场;第二阶段解决供应问题,到 2030 年实现氢燃料发电和通 过扩大氢能进口解决大规模供给;到 2040 年,建立起零碳排放的供氢体系,使氢加 入传统的“电、热”系统构建全新的二次能源结构。截至 2018 年底,日本建有加氢站 113 座,氢燃料车 2839 辆,家用氢燃料电池 22 万台。
美国重点开展燃料电池研究和布局加氢站建设
2014 年美国颁布的《全面能源战略》确定了氢能在交通转型中的引领作用,并 规划 2030~2040 年将全面实现氢能源经济。美国能源部 2019 年提出了《国家氢能 发展路线图》。目前美国氢能重点发展领域一是开展燃料电池系统研发,各级政府均 提供大量资金资助科研机构进行氢能和燃料电池关键零件研发工作。二是布局建设加 氢站,如美国加州每年计划拨款 2000 万美元用于加氢站建设,直到加州至少有 100 座加氢站;到 2025 年建立 200 座加氢站。截至 2018 年底,美国建有加氢站 42 座, 氢燃料车 5899 辆。
德国重视氢能交通工具的开发和氢能与可再生能源的协同发展
德国是欧洲氢能发展较快的国家,已在通信基站、加氢站、燃料电池车、氢能列 车、氢源建设等方面有所应用。德国联邦交通和数字基础设施部等正在编制《国家氢 能发展战略》,目标是将氢能与大力发展可再生能源战略相结合,大力推进低碳转型 发展。其重点发展领域一是开发零排放氢能交通工具,如清洁巴士、氢能列车等(德 国铁路电气化程度较低,约 59%的火车未实现电气化,德国政府试图使用燃料电池 火车来解决环境和电气化程度低的问题);二是投资可再生能源绿色制氢工艺及设施 建设。2019 年上半年部分德国企业在德国发起了 GET H2 倡议,目标是利用氢能促 进能源转型。合作企业计划在德国埃姆斯兰地区建立氢能基础设施,将该地区的能源、 工业、运输和供热部门联系起来,建造 105 兆瓦的电制氢(Power to Gas)设施, 利用风能生产“绿色氢气”,并利用现有基础设施运输、储存及应用氢气。截至 2018 年底,德国建有加氢站 60 座,氢燃料车 500 辆。
韩国氢能发展目标是氢能产业与传统制造业结合促进经济增长
韩国政府发展氢能的目标是通过发展氢经济减少对石油进口的依赖,同时将氢技 术与汽车、航运和石油化工等传统制造业联系起来,为钢铁生产、石油化工和机械工 程等传统行业带来新的投资和就业机会,形成新的经济增长点。韩国政府 2019 年初 发布《氢能发展路线图 2040》,计划到 2040 年,氢气供应量达到 526 万吨,累计生 产氢燃料电池汽车 620 万辆(含出口 330 万辆),建设 1200 座。截至 2018 年底, 韩国建有加氢站 14 座,氢燃料车 300 辆。
2.3 中国减排任务艰巨,发展清洁能源迫在眉睫
中国承诺到 2060 年实现“碳中和”,减排任务艰巨
我国减排任务艰巨,年排放量位居世界第一。根据联合国数据,2018 年中国碳 排放达到 137 亿吨,同比增长 1.6%。尽管我国碳排放的增速已经放缓,但从总量看, 占全球总排放量的 1/4 以上,仍是全球排名第一的碳排放国。作为世界工厂,在产业 链日趋完善、国产制造加工能力与日俱增的同时,我国的碳排放量也快速攀升。作为 负责任的大国,走低碳节能发展之路既是我国的责任所系,亦是使命所向。
应对气候变化要求我国持续大规模开发可再生能源
根据既定的能源战略,未来我国将构建清洁低碳、安全高效的现代能源体系,显 著特征之一是大幅提高可再生能源在一次能源消耗中的占比。为应对全球气候变化, 履行《巴黎协议》中碳减排目标,据国家可再生能源中心测算,我国既定能源政策仍 需降低化石能源使用占比来达成气候变化低于 2℃的目标。
根据《中国可再生能源展望 2018》的预测,2020-2030 年间,中国将迎来光伏 与风电大规模建设高峰。其中,新增光伏装机容量约 80-160GW/年,新增风电装机 约 70-140GW/年。到 2050 年,从我国一次能源需求来看,非化石能源的总体比例将 达到 70%,风能和太阳能成为我国能源系统的绝对主力,在可再生能源中的占比将 分别达到 44%和 27%。
得益于未来产业经济结构调整,能效水平的大幅提升和工业与交通领域的电气化 提升,2050 年的我国终端能源需求总量得到控制,化石能源消费大幅缩减,电力消 费显著上升。
2.4 氢&电耦合是构建我国现代能源体系的重要途径
氢&电耦合体系可突破可再生能源发展的限制
目前,我国能源发展逐步从总量扩张向提质增效转变,能源效率、能源结构、能 源安全已成为影响我国能源高质量发展的三大关键所在。相比其他转型方式,氢能与 电能结合将成为构建现代能源体系的重要途径。 电能是多种能源间灵活高效转化的关键媒介,能量转换效率通常在 90%以上。
电气化水平的提升,有利于提升能源利用效率、降低化石能源在终端能耗中的占比, 并缓解我国能源资源与负荷中心逆向分布的问题。据国网能源研究院预测,到 2050年电力在我国终端能源消费的比重将增长至 47%,超出全球平均水平。
氢能与电能同属二次能源,更容易耦合电能、热能、燃料等多种能源并与电能一 起建立互联互通的现代能源网络。更为重要的是,氢能可实现不连续生产和大规模储 存,这将显著增加电力网络的灵活性。
在可再生能源方面,目前光伏与风电行业均已处于平价前夕,平价后行业发展将 由政策驱动转变为消纳驱动,电网消纳能力将成为制约行业发展的首要因素。与基于 化石能源的电能和石油制品生产方式相比,可再生能源具有明显的分布和不稳定生 产的特征,且区别于电网与石油网络相互独立的特征,氢能与电能的深度耦合恰能 支撑更高份额的可再生能源电力的发展,主要表现为两点:1)氢能可满足可再生能 源规模化、长周期储能需求;2)氢能可作为燃料,通过燃料电池为交通和工业领域 提供电能、热能,有效降低化石能源的使用,继续提升电力在能源系统中的比重。 据中国氢能联盟预测,2050 年氢能将在我国能源体系中的占比达到 10%。
同时,可再生能源制氢与氢储运、氢应用技术的不断进步,有望使部分优势地区 的可再生能源摆脱电网设施及消纳条件的限制。通过大规模开发风、光等可再生能源 电站,以较低的发电成本就地制氢,通过氢能储运网络实现可再生能源高效、低成本 的区域输送调配,而丰富的氢能应用场景和电、氢深度耦合体系将有力支持大规模氢 气的消纳。届时,氢能有望成为我国重要的出口能源重构世界能源格局。这为突破可 再生能源发展瓶颈提供了新的思路和空间。电氢耦合将成为现代能源体系的重要特征, 电氢能源体系将为开发我国丰富的可再生能源提供可靠的载体并培育适合的产业生 态,可再生能源有望突破现阶段各种约束,迎来巨大的发展空间。
此外,将氢气应用于储能领域,可以同时兼顾以下优势:
1)具备更低的储能成本:固定式储能电池成本比储氢容器成本大约高 10 倍, 单车在储能优势下降到 3~5 倍(燃料电池的效率导致储能量比车在动力电池高一倍,同时,储氢体积能量密度低需要更高压力);
2)与储电的互补性:相比动力电池的高频调节,氢储能属于低频调节,两者互 补性强;
3)灵活的制运储方式:长管拖车经济运输半径 300 公里以内;1 千公里以上可 长途输电-当地制氢,或天然气管道掺氢等。
2.5 中国氢能兼具产业基础及应用市场,综合优势显著
中国具有丰富的氢能供给经验和产业基础。经过多年的工业累计,中国已是世界 上最大制氢国,初步评估现有工业制氢产能为 2500 万吨/年,可为氢能及燃料电池产 业化发展初期阶段提供低成本的氢源。富集的煤炭资源辅之以二氧化碳捕捉与封存技 术可提供稳定、大规模、低成本的氢源供给。同时,中国是全球第一大可再生能源发 电国,每年仅风电、光伏、水电等可再生能源弃电约 1000 亿千瓦时,可用于电解水 制氢约 200 万吨,未来随着可再生能源规模的不断壮大,可再生能源制氢有望成为 中国氢源供给的主要来源。
中国氢能应用市场潜力巨大。氢能在能源、交通、工业、建筑等领域具有广阔的 应用前景,尤其以燃料电池车为代表的交通领域是氢能初期应用的突破口与主要市场。 中国汽车销量已连续十年居全球第一,其中新能源汽车销量占全球总销量的 50%。 工信部在新发布的《新能源汽车产业发展规划 2021-2035 年》中,将以新能源汽车 高质量发展为主线,探索新能源汽车与能源、交通、信息通信等深度融合发展的新模 式,重点向燃料电池车拓展。在工业领域,中国航贴、水泥、化工等产品产量连续多 年居世界首位,氢气可为其提供高品质的燃料和原料。在建筑领域,氢气通过发电、 直接燃烧、热电联产等形式为居民住宅或商业区提供电热水冷多联供。未来,随着碳 减排压力的增大与氢气规模化应用成本的降低,氢能有望在建筑、工业能源领域取得 突破性进展。
中国氢能与燃料电池技术基本具备产业化基础。经过多年科技攻关,中国已掌握 了部分氢能基础设施与一批燃料电池相关核心技术,制定出台了国家标准 86 项次, 具备一 定的产业装备与燃料电池整车的生产能力;中国燃料电池车经过多年研发积 累,已形成自主特色的电-电混合技术路线,并经历规模示范运行。
根据中国氢能联盟的预计,到 2030 年,中国氢气需求量将达到 3500 万吨,在 终端能源体系中占比 5%。到 2050 年氢能将在中国终端能源体系中占比至少达到 10%,氢气需求量接近 6000 万吨,可减排约 7 亿吨二氧化碳,产业链年产值约 12 万亿元。
3 产业发展基础先行,国产化同步推进2019 年氢能源首次写入《政府工作报告》,政府工作任务中明确“将推动充电、 加氢等设施建设”。自 2011 年以来有关部门已经从战略、产业结构、科技、财政等方 面相继发布了一系列政策,引导鼓励氢燃料电池等氢能产业发展。按照 2019 年发布 的《中国氢能源及燃料电池产业白皮书》,国内氢能从制氢到用氢发展路径逐渐清晰, 有助于我国提早进入能源自给自足的氢能社会:
制氢产业:短期优先选用工业副产氢,中期采用化石能源制氢结合碳捕捉技术, 长期采用可再生能源电解水制氢;
氢能储运:将按照“低压到高压”“气态到多相态”的技术发展方向,逐步提升氢气 的储存和运输能力;
燃料电池系统:将持续围绕功率、性能、寿命、成本四大要素而发展。具体应用 集中在交通领域,从商用车切入、乘用车跟进。
3.1 制氢:大规模低成本氢气是关键,路线由 “灰氢”向“绿氢”发展
目前制氢技术路线按原料来源主要分为化石原料制氢、化工原料制氢、工业尾气 制氢和电解水制氢几种。常规的制氢技术路线中以传统化石能源制氢为主,全球范围 内主要是使用天然气制氢,我国由于煤炭资源比较丰富,因此主要使用煤制氢技术路 线,占全国制氢技术的 60%以上。
为了区分制氢途径的清洁度(碳排放量),我们将可再生能源电解水得到的氢气 称为“绿氢”,生产过程做到零碳排放;将以化石能源为原料,通过蒸汽甲烷重整或自 热重整等方法制造的氢气称为“灰氢”,灰氢的成本较低,但是碳强度较高;在甲烷蒸 汽重整与自热重整制氢过程中增加碳捕捉和贮存环节(CCS),这样制出的氢气被称 为“蓝氢”。蓝氢可以降低碳排放量,但无法消除所有碳排。
化石原料制氢。化石原料制氢是通过煤炭、天然气、石油和页岩气等能源通过重 整生成氢气,目前技术路线十分成熟,平均价格也相对较低。我国煤炭资源丰富,化 石原料制氢主要以煤或者煤焦作为原料,通过重整反应得到以 H2和 CO 为主要成份 的混合气,再经过净化和提纯等环节产生成品氢气。而天然气制氢价格挂钩天然气价 格,中国“富煤、缺油、少气”的资源禀赋特点,仅有少数地区可以探索开展,天然气 制氢平均成本明显高于煤气化制氢。国际上主要是以天然气和页岩气等以甲烷水蒸气 为主要成份的原料进行重整。
化工原料制氢。使用甲醇等化工原料在一 定温度和压力条件下,在催 化剂作用 下发生裂解反应产氢气和 CO 等含碳气体。CO 和水蒸气可以继续发生变换反应,最 终生成 H2 和 CO2,之后再通过变压吸附去除 CO2,得到高纯度 H2。甲醇裂解技术 工艺系统比使用化石能源制氢简单,运行更加稳定,产品气中不含污染物或有害气体, 特别适用于中小规模制氢。但生产成本受甲醇价格影响明显,制氢成本明显高于化石 能源制氢或工业副产物制氢。
工业副产制氢。工业副产制氢是在工业生产的过程中,利用富含氢气的终端废弃 物或副产物作为原料,采用变压吸附法(PSA)回收提纯制氢。工业副产主要来自以 下两个来源:焦炉煤气制氢和氯碱副产品气制氢。焦炉煤气中,氢气含量占 50%以 上,除此还含有大量甲烷,经过压缩、提纯和脱氧等工艺可以制取高浓度氢气。但现 实问题是目前焦炉煤气在钢铁企业中,已经被充分利用为烧结、炼铁和炼钢等工序的 燃料,工艺流程之间配合成熟,采用焦炉煤气制氢发展空间有限。氯碱副产物制氢是 指在通过电解饱和 NaCl 溶液的方法来制取 NaOH 的过程中,会生成 Cl2和 H2副产 物,副产物气体杂质含量低,在提纯前氢气浓度已经大于 99%,提纯难度比较小。 据资料统计,目前 30%以上的副产物氢气直接被放空排放,没有得到有效利用。回 收使用氯碱行业氢气副产物可快速满足国内氢气需求,同时具有经济优势。
电解水制氢。电解水制氢是原理最为简单的制氢方法,将正负电极插入水中并通 直流电,水中的氢离子在阴极发生还原反应析出氢气,氢氧根离子在阳极发生氧化反 应析出氧气。电解水制氢技术设备简单,工艺流程稳定可靠,产生的氢气纯度极高, 可以满足高纯度的氢气需求,同时不产生污染。但缺点是能耗大,制氢成本是目前工 业化制氢领域最高的,单位制氢成本是煤制氢的 4~5 倍。而且规模较小,制氢量一 般小于 200m3 /h。目前电解成本高是制约电解水制氢技术推广使用的最重要原因。但 同时,在我国三北地区,大量可再生能源电力如风电和光伏发电还存在不能并网的情 况。由于电能不能大规模储存,弃风弃光一方面造成了能源的浪费,另外还会造成设 备的损耗。因此采用可再生能源如风能和太阳能发电,再进行电解制氢,可极大降低 制氢成本,是目前制氢领域的研究热点,具有技术可行性和经济优势。
制氢路线上将由化石能源制氢逐步过渡至可再生能源制氢。随着氢能在社会发 展中的需求量越来越大,制氢作为氢产业链的最上游也将会得到飞速发展。选取具有 经济优势的技术路线,降低制氢成本,是氢能推广使用的关键。在现有的制氢技术 中,使用煤或天然气制氢具有显著的成本优势,而且我国具有丰富的煤炭资源。但使用化石能源作为原料终究不可持续,而且会产生新的污染。使用甲醇等化工原料制氢 受上游产品约束,产量和价格浮动较大,难以形成稳定有效的氢能供给。使用工业尾 气制氢同样存在原料少,来源不稳定的问题。目前看来,可以支撑未来巨大氢能需求 量,原料来源稳定的制氢方式应为电解水制氢。虽然目前由于成本太高,电解水在氢 能制备产业中只占 4%左右,与其它方式相比暂时不具备竞争优势。但如果能考虑利 用我国每年大量不能上网的风能和光伏等可再生能源电力作为能源,可以极大地降低 制氢用电成本,推动电解水技术推广使用,同时可有效解决可再生电力消纳问题。
相比通过大规模的输电设施建设来分配可再生能源电力,将可再生能源电力就地 制氢,再通过管道和公路等方式储存和运输,就近消纳,应该是更贴近市场需求和解 决可再生能源消纳的措施。
3.2 储运氢:氢气的储存和运输效率亟待提高
氢气的可大规模存储和运输是其区别于化学电池储能的重要特性,在资源总量不 受约束,制备成本中远期可控的前提下,氢气的储存性能和运输效率是氢能网络建设 的瓶颈问题。
储氢技术
目前,氢气的储存主要有气态储氢、液态储氢和固体储氢三种方式、高压气态储 氢已得到广泛应用,低温液态储氢在航天等领域得到应用,有机液态储氢和固态储氢 尚处于示范阶段。
气态储氢。高压气态储氢具有充放氢气速度快、容器结构简单等优点,是现阶段 主要的储氢方式,氛围高压氢瓶和高压容器两大类。其中钢制氢瓶和钢制压力容器技 术最为成熟,成本较低。20MPa 钢制氢瓶已得到广泛的工业应用,并于 45MPa 钢制 氢瓶、98MPa 钢带缠绕式压力容器组合应用于加氢站中。碳纤维缠绕高压氢瓶的开 发应用,实现了高压气态储氢瓶由固定式应用向车载储氢应用的转变。70MPa 碳纤 维缠绕 4 型瓶已经是国外燃料电池乘用车车载储氢的主流技术,35MPa 碳纤维缠绕 3 型瓶目前仍是我国燃料电池商用车的车载储氢方式,70MPa 碳纤维缠绕 3 型瓶已 少量用于我国燃料电池乘用车中。
液态储氢。液态储氢具有储氢密度高等优势,可分为低温液态储氢和有机液体储 氢。低温液态储氢将氢气冷却至-253℃,液化储存于低温绝热液氢罐中,储氢密度可 达 70.6kg/m3,但装置一次性投资较大,液化过程中能耗较高,储存过程中有一 定 的蒸发损失,其蒸发率与处请关注容积有关,大储罐的蒸发率远低于小储罐。国内产 能液氢已在航天工程中成功使用,民用缺乏相关标准。
有机液体储氢利用某些不饱和有机物(如烯烃、炔烃或芳香烃)与氢气进行可逆 加氢和脱氢反应,实现氢的储存,加氢后形成的液体有机氢化物性能稳定,安全性高, 储存方式与石油产品相似。但存在着反应温度较高、脱氢效率较低、催 化剂易被中 间产物毒化等问题。国内已有燃料电池客车车载储氢示范应用案例。
固体储氢。固态储氢是以金属氢化物、化学氢化物或纳米材料等作为储氢载体, 通过化学吸附和物理吸附的方式实现氢的存储。固态储氢具有储氢密度高、储氢压力低、安全性好、放氢纯度高等优势,其体积储氢密度高于液氢。但主流金属储氢材料 质量储氢率仍低于 3.8wt%,质量储氢率大于 7wt%的轻质储氢材料还需解决吸放氢 温度偏高、循环性能较差的问题、国外固态储氢已在燃料电池潜艇中商业应用,在分 布式发电和风电制氢规模储氢中得到示范应用:国内固态储氢已在分布式发电中得到 示范应用。
氢输运技术
氢气在常温常压下为气态,密度仅为 0.0899 千克/立方米。作为易燃气体,它属 于 І 类危险品(非燃料),与空气混合能形成爆炸性混合物,遇热即发生爆炸,因此 对运输安全要求较高。目前氢气的输运方式主要有气态运输、液态输运和固体输运三 种方式。
气态输氢。高压气态输运可分为长管拖车和管道输运 2 种方式。高压长管拖车是 氢气近距离输运的重要方式,技术较为成熟,国内常以 20MPa 长管拖车运氢,单车 运氢约 300 公斤,国外则采用 45MPa 纤维缠绕高压氢瓶长管拖车运氢,单车运氢可 提至 700 公斤。
管道运输是实现氢气大规模、长距离运输的重要方式,管道运行压力一般为 1.0~4.0MPa,具有输氢量大、能耗小和成本低等优势,但建造管道一次性投资较大。 美国已有 2500 公里的输氢管道,欧洲已有 1598 公里的输氢管道,我国则仅有 100 公里的输氢管道(法规限制)。
液态输氢。液态输氢通常适用于距离较远、运输量较大的场合。其中,液氢罐车 可运 7 吨氢,铁路液氢罐车可运 8.4-14 吨氢,专用液氢驳船的运量可达 70 吨。采用 液氢储运能够减少车辆运输频次,提高加氢站单站供应能力。日本、美国已将液氢罐 车作为加氢站运氢的重要方式之一。我国仅在航空航天有运用液氢技术。
固态输氢。轻质储氢材料(如镁基储氢材料)兼具高的梯级储氢密度和质量储氢 率,作为运氢装置具有较大潜力。将低压高密度固态储罐仅作为随车输氢容器使用, 加热介质和装置固定放置于充氢和用氢现场,可以同步实现氢的快速充装及其高密度 高安全输运,提高单车运氢量和输氢安全性。
目前,我国氢能示范应用主要围绕工业副产氢和可再生能源制氢地附近(小于 200 公里)布局,氢能储运以高压气态方式为主。氢能市场渗入前期,车载储氢将以 70MPa 气态方式为主,辅以低温液氢和固态储氢,氢的运输将以 45MPa 长管拖车、 低温液氢、管道(示范)输运等方式,因地制宜,协同发展。中期(2030 年),车载 储氢将以气态、低温液态为主,多种储氢技术相互协同,氢的输运将以高压、液态氢 罐和管道输运相结合,针对不同细分市场和区域同步发展。远期(2050 年)氢气管 网将密布于城市、乡村,车载储氢将采用更高储氢密度、更高安全性的储氢技术。
3.3 加氢站:核心设备依赖进口,国产化逐步开启
加氢站是氢能源产业上游制氢和下游用户的联系枢纽,是产业链的核心。加氢站 的建设数量和普及程度,在很大程度上决定了氢燃料电池汽车的产业化进程。
中国加氢站氢源绝大部分来自于外供高压氢气
加氢站的技术路线主要站内制氢技术和外供氢技术。站内制氢技术又包括天然气 重整制氢和电解水制氢。其中,电解水制氢已经应用广泛且技术已十分成熟,欧洲大 多数加氢站都采用这种技术。据不完全统计,当前国内正在运营的加氢站中,仅大连 新源加氢站、北京永丰加氢站具备站内制氢能力,其余加氢站的氢气主要来源于外部 供氢,使用氢气长管拖车(运输高压气态氢)、液氢槽车(运输低温液态氢)往返加 氢站与氢源之间。由于燃料电池汽车还没有实现大规模运营,目前加氢站建设成本和 运营成本远远高于传统加油站、加气站。从全球范围内来看,政府和整车企业是加氢 站建设的主体,政府补贴的幅度均超过 50%。
中国加氢站目前都尚未盈利,能否盈利取决于运营成本、投资额、运行负荷
截至 2019 年底,全国累计已建成的加氢站共有 61 座,已经投入运营的有 52 座, 在建/拟建加氢站数量为 72 座。按照《节能与新能源汽车技术路线图》规划,到今年 底,我国计划燃料电池汽车规模达到 5000 辆,建成加氢站至少 100 座;到 2025 年, 建成加氢站至少 300 座。但是中国加氢站目前都尚未盈利,从加氢站的营运模式来 看,能否盈利主要取决于运营成本(氢气的价格)、投资额(设备)、加氢站运行负荷 (燃料电池汽车保有量)。
氢气的大规模、低成本、高效的制备和运输是降低氢气价格的首要解决难题
当前氢气交货成本远大于同等能量水平下的汽柴油成本。我们对氢气与汽柴油 做简单经济性对比,汽车行驶每 100 公里,需要消耗 1kg 氢气或 6-7 升汽油,每升 汽油价格为 6.5~7 元左右(对应布伦特油价 55 美元/桶),因此每百公里的汽油成本 为 39-49 元,即只要氢气的成本降至 40 元/kg 以下,氢气能源较之传统汽油就有成 本优势。但现阶段国内氢站氢气零售价格普遍为 60-70 元/kg,明显高于传统汽柴油 的交货成本,如果氢燃料电池公交车运行成本要达到和柴油车同等水平,加氢站氢气售价需要大幅降低。
从氢气售价结构来看,主要由氢气原材料、氢气的生产运输成本、加氢站的固定 和可变成本以及加氢站运营维护几个部分组成。其中涉及到氢气的制备和储运的成本 占到 70%。而对比看来,汽油售价的重要组成部分则是汽油的消费税。因此从降低 氢气售价角度,氢气的大规模、低成本、高效的制备和运输是首先要解决的关键性 难题。
加氢站主要设备倚靠进口,关键技术国产化进程有待加速
典型的外供氢的高压气氢加氢站投资组成中,除去土建及,设备费用占据最大比 例,主要是压缩机、储氢瓶、加氢和冷却系统,由于国内缺乏成熟量产的加氢站设备 厂商,进口设备推高了加氢站建设成本。目前建设一座 35MPa,500kg/d 固定式加 氢站的投资成本约为 1500-2000 万元,即使扣除政府补贴的 300-500 万元,加氢站 投资成本依然是传统加油站的 2~3 倍。虽然中国所生产的加氢站设备各项技术指标 仍有欠缺,但是目前国产化已经开启,业内企业在各领域均推出自主产品。
4、 氢燃料电池汽车拉开氢能商业化利用序幕4.1 燃料电池是氢能高效利用的重要途径,交通领域成长性最强
氢燃料电池原理是氢与氧结合生成水的同时将化学能转化为电能和热能,该过程 不受卡诺循环效应的限制,理论效率可达 90%以上,具有很高的理论经济性。氢气 进入燃料电池的阳极,在催 化剂的作用下分解成氢离子和电子。随后,氢离子穿过 隔膜到达阴极,在催 化剂作用下与氧气结合生成水,电子则通过外部电路向阴极移 动形成电流。不同于铅酸、锂电等储能电池,燃料电池类似于“发电机”,且整个过程 不存在机械传动部件,没有噪声和污染物排放。
交通领域氢能成长性最强
燃料电池在交通领域具有最强增长潜力。从全球来看,燃料电池主要运用于固定 式电源、交通运输和便携式电源三大类领域。既适用于集中发电,建造大中型电站和 区域性分散电站,也可用作各种规格的分散电源。交通运输领域包括为乘用车、巴士 /客车、叉车以及其他以燃料电池作为动力的车辆,目前来看,随着国家氢能产业的 推进和技术的成熟,交通领域应用的商业化进程正在加速,且交通运输领域成长性最 强。据 E4Tech 数据,2019 年全球交通运输用燃料电池出货量为 0.908 GW,近五年 年均复合增速达 41.2%,其占全球燃料电池出货量的比例从 2015 年的 38.2%提升至 80.3%,燃料电池在交通运输领域的应用保持高速增长。
中国燃料电池汽车销量高速增长,但保有量仍处于较低水平
受补贴退坡的影响,2019 年中国新能源汽车整体产销出现大幅收缩,但燃料电 池汽车却呈现高速增长的局面,2019 年燃料电池汽车销量为 2737 辆,同比增加 79.2%。2020 上半年,我国燃料电池汽车销量为 403 辆,同比下降 63.4%。由于目 前燃料电池汽车在我国仍处于试点示范阶段,订单来自政府采购,且以商用为主,保 有量相比同为新能源的纯电动车,基数仍处于较低水平。按照燃料电池发展白皮书, 到 2030 年,我国燃料电池汽车保有量达到 200 万辆水平,到 2050 年,保有量水平 达到 1000 万辆水平。
乘用车发展缓慢,发展集中于商用车
我国车载燃料电池车以商用车和专用车主导。从今年初至今 11 个批次新能源汽 车推广目录来看,其中燃料电池汽车车型以客车及专用车为主,燃料电池乘用车车型 仅 1 款。
与国际燃料电池汽车发展相比,国内燃料电池乘用车产业化发展缓慢。主要由 于两方面的原因,一方面,我国燃料电池堆的技术水平还达不到乘用车的水准,经济 性方面仍无法与目前的燃油车、纯电车相媲美。另一方面,燃料电池车的推广离不开 加氢站的建设。加氢站配套的不足直接导致下游需求的弱化,车企没有动力向乘用车 领域进行研发和推广。
4.2 燃料电池系统期待技术突破和规模效应
电堆是燃料电池心脏,占据燃料电池系统一半成本
在燃料电池车中,燃料电池系统由燃料电池组和辅助系统组成。燃料电池堆是核 心部件,它将化学能转化为电能为汽车提供动力。燃料电池系统除燃料电池堆外,还 有四个辅助系统:供氢系统、供气系统、水管理系统和热管理系统。供氢系统将氢从 氢气罐输送到燃料电池堆;由空气过滤器、空气压缩机和加湿器组成的供气系统为燃 料电池堆提供氧气;水热管理系统采用独立的水和冷却剂回路来消除废热和反应产物 (水)。通过热管理系统,可以从燃料电池中获取热量来加热车辆的驾驶室等,提高 车辆的效率。燃料电池系统产生的电力通过动力控制单元(“PCU”)传到电动机,在 电池的辅助下,在需要时提供额外的电力。
从成本端来看,系统中最核心的部分是燃料电池电堆和空压机,根据 DOE 对 80KW 系统的成本测算,在年产 50 万套的规模化条件下,电堆已占据燃料电池系统 约一半成本,而空压机占比超过四分之一,这两部分也是降低燃料电池系统综合成本 的关键。
燃料电池堆与关键材料:国内电堆技术水平存在差距
对比国内外燃料电池电堆,国内电堆在核心材料与关键技术方面仍存在短板,也 是造成燃料电池电堆成本居高不下的主要原因,其中膜电极层三大关键材料 P/t 催 化 剂、质子交换膜、碳纸主要依赖进口,国产材料尚无法满足高性能燃料电池电堆使用 需求;集流体双极板方面,石墨双极板经过多年开发已以国外技术水平相当,但低成 本、轻薄的金属双板开发仍为空白。
1)催 化 剂(catalyst)
催 化 剂是膜电极的关键材料之一,其作用是降低反应的活化能,促进氢、氧在 电极上的氧化还原过程、提高反应速率。目前,燃料电池中常用的商用催 化剂是 Pt/C 催 化剂,由 Pt 的纳米颗粒分散到碳粉(如 XC-72)载体上的担载型催 化剂。
在降低催 化剂成本的方面,目前有两条路径,一条是降低铂的使用量,另一条 则是研发非铂催 化剂,两者都已有所进展。铂使用量的降低现在已有所成效,纵观 燃料电池发展史,每平方厘米需要的铂已经从最初的 50mg 降低到了现在的不足 0.2mg。而非铂催 化剂也在研究中,虽然无铂催 化剂尚未进入工业应用的阶段,但 很可能是未来大幅降低燃料电池成本的关键。
在工业化生产方面,日本、英国、比利时等国外供应商的催 化剂制备技术处于 绝对的领先地位,已经能够实现批量化生产(>10 公斤/批次),而且性能稳定,可 靠性高。国内目前几乎没有产业化催 化剂制造企业,催 化剂产品也比较单一。
2)质子交换膜(Proton Exchange Membrane,PEM)
质子交换膜是一种固态电解质膜,其作用是隔离燃料与氧化剂、传递质子(H+)。 目前常用的商业化质子交换膜是全氟磺酸膜,其碳氟主链是疏水性的,而侧链部分的 磺酸端基(-SO3H)是亲水性的,膜内会产生微相分离,当膜在润湿状态下,亲水相 相互聚集构成离子簇网络,传导质子。
3)气体扩散层(Gas Diffusion Layer,GDL)
气体扩散层位于流场和催化层之间,其作用是支撑催化层、稳定电极结构,具有 质/热/电的传导功能。因此 GDL 必须具备良好的机械强度、合适的孔结构、良好的 导电性、高稳定性。通常 GDL 由支撑层和微孔层组成,支撑层材料大多是憎水处理 过的多孔碳纸或碳布,微孔层通常是由导电炭黑和憎水剂构成,作用是降低催化层和 支撑层之间的接触电阻,使反应气体和产物水在流场和催化层之间实现均匀再分配, 有利于增强导电性,提高电极性能。
国外大多数制造厂商都已实现气体扩散层的规模化生产,且都有多款适应不同应 用场景的产品销售,包括日本东丽、德国 SGL 和加拿大 AVCarb 等。国内气体扩散 层还处于初级碳微孔层的制备阶段,性能均一性和稳定性尚未得到实际验证。
4)双极板(Bipolar Plate,BP)
双极板是燃料电池的阴极板和阳极板,其作用是传导电子、分配反应气并带走生 成水。功能上,双极板材料应是电与热的良导体、具有一 定的强度以及气体致密性 等;稳定性方面要求双极板在燃料电池酸性(pH=2~3)、电位(E=1.1V)、湿热(气 水两相流,约 80℃)环境下具有耐腐蚀性且对燃料电池其他部件不材料的相容无污 染性;商业化方面要求双极板材料要易于加工、成本低。燃料电池常采用的双极板材 料包括石墨碳板、复合双极板、金属双极板三大类,由于车辆空间限制(尤其是乘用 车),要求燃料电池具有较高的功率密度。因此相对较薄的金属双极板有更好的应用 前景。
国内石墨双极板技术近年来发展迅速,技术水平与国外相当,但厚度通常在 2mm 以上。复合膜压碳板在国外已突破 0.8mm 薄板技术,具备与金属板同样的体积功率 密度。目前国内薄碳板开发方面,国鸿有来自于加拿大巴拉德公司的授权技术。纯国 产复合膜压碳板处于研制开发阶段,预计 2021 年 1mm 薄板开始批量生产。
在金属双极板基材方面,目前是以不锈钢和钛合金板为主。不锈钢基材开发钢铁 企业为代表,而国内金属极板专用基材的发开方面仍为空白。
燃料电池系统:基本性能满足商业化需求,降本是重点
对比《节能与新能源汽车技术路线图(2016 年)》提出的技术目标,截止到今年, 我国乘用车、商用车用燃料电池系统的性能研发,系统性能已满足使用需求,但成本 在现有规模下距离目标要求依然还有很大差距,成本仍然是制约燃料电池汽车大规模 商业化的主要因素。
规模效应下,燃料电池系统成本有望下降至 40 美元/kW
美国能源部(DOE)对燃料电池汽车的成本进行了预估,规模效应将对燃料电 池及燃料电池汽车的成本形成重要影响。随着生产规模的扩大化,燃料电池系统的成 本将大幅下降。基于 2020 年的技术水平,在年产 50 万套 80kW 电堆的规模下,质 子交换膜燃料电池系统成本可降低到 40 美元/kW,即 80kW 燃料电池汽车的电池系 统总价约 3200 美元(约 2 万人民币)。
未来燃料电池车成本有望比动力电池汽车更低
燃料电池成本下降速率将明显高于锂离子电池:①锂离子电池产业成本下降速率 已趋于稳定,而燃料电池产业仍处在发展初期,成本具有巨大下降潜力;②燃料电池 电堆中除铂催 化剂外,其他材料包括石墨、聚合物膜、钢等,几乎不存在类似于锂、 钴、镍等稀缺材料对锂电池成本的刚性限制。同时,单位功率铂用量大幅下降,丰田 Mirai 燃料电池铂含量仅约 0.2g/kW,未来有望降低至 0.1g/kW 以下,且铂可以回收 利用,可以有效降低电堆成本。
4.3 “以奖代补”新政引导产业进入规模化-降本-技术提升良性循环
2020 年 9 月,财政部、工业和信息化部、科技部等 5 部门联合发布了《关于开展燃料电池汽车示范应用的通知》,明确燃料电池汽车示范期间,将采取“以奖代补” 方式,对入围示范的城市群按照其目标完成情况给予奖励。
区别于早期购置补贴政策,“以奖代补”新政采取了考核+奖励的新形式,以结果 为导向,将奖励资金统筹用于燃料电池汽车关键核心技术产业化,人才引进及团队建 设,最大化避免早期单纯补贴政策带来骗补等弊端。
补贴扶持下,燃料电池汽车进入“规模化-降本-技术提升”的良性循环,加速进入 氢能平价时代。在 4 年补贴扶持期间,补贴后燃料电池汽车基本实现对标燃油车平价, 刺激市场化整车采购需求,推动产业迈出规模化第一步,进入降本放量的良性循环, 加速平价阶段的到来。
新政策引导燃料电池汽车向重卡方向发展
从评价体系内容来看,燃料电池推广方案扶持重载货运车型倾向明显,尤其是大功率、大载重车型获得政策扶持力度更大。主要是由于重卡燃料消耗高,对减排和能 源安全意义重大。2019 年国内汽车销量 2577 万辆,其中重卡 117 万辆,占比 5%。 虽然重卡产销占比不高,但由于负荷重,运营时间长,其燃油消耗量占比超过 30%, 颗粒物、NOX 排放量占比分别达到 52%、74%,实现重卡电动化对推动节能环保意 义重大。在重卡的电动化推进过程中,锂电由于功率密度受限,且充电时长较长,并 不适用于重载长续航领域,燃料电池则刚好弥补了锂电的应用劣势。
新补贴政策模式下,燃料电池重卡初购成本与柴油车持平。按照燃料电池汽车 初购落地价 = 指导价-国补(初始奖励积分*权益增量(倍)*标准车折算系数(倍) *10)-地补。选取补贴方案最受益车型,目前 45~50 吨配套 100kW 燃料电池系统的 重卡车型销售价格约为 140~150 万元,依据最新补贴方案,可获得国家奖励 54.6 万 元(重型商用车(≥31t)2020 年最高奖励:1.3*1.5*2.8*10=54.6 万(P≥110)),考 虑地补 1:1,扣除补贴后的燃料电池重卡落地价在 30~40 左右。对比同规格的柴油重 卡销售价格,实施完补贴后的氢燃料重卡在初次购买成本上获得了明显优势。
新政策推动中上游核心零部件及材料国产化,持续降低成本
目前在下游系统、电堆环节,国产企业已经实现产品批量供应,随着膜电极国产 化的逐步深入,燃料电池产业链已经基本实现国产化。但产业链中质子交换膜、碳纸 等材料环节仍处于研发或小批量试制阶段,持续引导国产化推进,实现技术独立可控 对成本下降意义重大。此外由于产业规模尚小,同时 MEA 等部件国产化时点较晚, 造成目前除了系统、电堆龙头企业外,大部分国产化产品尚未能形成大规模,长周期 应用,政策扶持期将提供国产部件的规模化应用及技术提升的空间。
新政策鼓励氢气资源优势区域率先进入平价
氢气价格对氢燃料电池全周期成本影响显著,目前国内各地区氢气来源不同,终 端氢气售价存在较大差异。政策要求具备燃料电池产业推广条件的城市群自发申报成 为扶持区域。对区域优势可以从三方面理解,其一是指有氢气基础:燃料电池对氢气 的依赖性决定了选择有供氢基础条件的区域展开示范是最佳解决方案。其二是指有燃料电池产业基础。国内燃料电池产业化已经经过了 3 年左右,形成了一批初步具备自 主技术实力的产业企业,在已有产业基础地区开展示范直接减少重复投资和无效竞争, 同时也利好领先企业形成规模化产销。此外,现阶段政策是产业发展的主要推动,地 方财政实力成为推动区域内 FCV 产业的必要条件。
5、 投资机会氢能是一种清洁、高效、安全、可持续的二次能源,可通过多种途径获取,符合 我国碳减排大战略,同时有利于解决我国能源安全问题,有望进入我国主流能源体系, 是我国能源革命的重要媒介。从氢能实际应用来看,氢燃料电池是氢能高效利用的最 有效途径,当前氢能产业链已初具雏形,且燃料电池系统性能已满足商业化需求,但 大规模商业化应用依然受经济性及实用性制约。因此燃料电池系统成本的不断下降以 及性能的不断提升是当前首要解决的问题,我们认为产业链上下游中,核心零部件国 产化各细分领域龙头最先受益。
6 风险提示行业政策不及预期。氢能产业政策与燃料电池汽车补贴政策在未来几年有支撑力 度下降、补贴退坡的可能性,可能导致产量不及预期的可能性。
技术突破不及预期。产业链各环节涉及的核心技术较多,技术突破遭遇瓶颈,国 产化进度降速,势必影响其经济性与规模。
宏观经济景气度不及预期。宏观经济景气度下降,燃料电池投资不及预期。
……
(报告观点属于原作者,仅供参考。报告来源:国联证券)
如需完整报告请登录【未来智库官网】。